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Abstract

We explore hybrid subgroups of certain non-arithmetic lattices in
PU(2, 1). In particular, we show that all of Mostow’s small phase-shift
non-arithmetic lattices arise via a hybrid construction

1 Introduction

One key notion in the study of lattices in a semisimple real Lie group G is that
of arithmeticity (which we will not defined here; see [Mor15] for a standard
reference). When G arises as the isometry group of a symmetric space X of
non-compact type, the combined work of Margulis [Mar84], Gromov–Schoen
[GS92], and Corlette [Cor92] imply that nonarithmetic lattices only exist
when X = Hn

R or X = Hn
C (real and complex hyperbolic space, respectively);

equivalently, up to finite index, G = PO(n, 1) or PU(n, 1). Due to their
exceptional nature, it has been a major challenge to find and understand
nonarithmetic lattices in these Lie groups.

Given two arithmetic lattices Γ1,Γ2 in PO(n, 1) with common sublattice
Γ1,2 ≤ PO(n − 1, 1), Gromov and Piatestki-Shapiro showed in [GP87] that
one can produce a new ”hybrid” lattice Γ in PO(n, 1) by way of a technique

1



1 INTRODUCTION 2

that they call ”interbreeding.” In particular, when Γ1 and Γ2 are not com-
mensurable, Γ is shown to be nonarithmetic. It has been asked whether an
analogous technique can exist for lattices in PU(n, 1).

Hunt proposed one possible analog (see the references contained in [Pau12])
where one starts with two arithmetic lattices Γ1,Γ2 in PU(n, 1) and embed-
dings ιi : PU(n, 1) ↪→ PU(n + 1, 1) such that (1) ι1(Γ1) and ι2(Γ2) stabilize
totally geodesic complex hypersurfaces in Hn+1

C , (2) that these hypersurfaces
are orthogonal to one another, and (3) that ι1(Γ1) ∩ ι2(Γ2) is a lattice in
PU(n− 1, 1). The hybrid subgroup is then H(Γ1,Γ2) := 〈ι1(Γ1), ι2(Γ2)〉.

In [Pau12] Paupert produces an infinite family of hybrids that are non-
discrete. In [PW18] Paupert and the author produce examples of discrete
(and arithmetic) hybrids in the Picard modular groups, some with finite co-
volume and others with infinite covolume. In this paper, we explore a slightly
modified hybrid construction in the context of lattices produced by Mostow
in [Mos80] (these are lattices in PU(2, 1) generated by three complex reflec-
tions or order p with phase shift parameter t, see Section 2.3 for the explicit
definition) and prove the following main result:

Theorem 1. 1. All of Mostow’s non-arithmetic lattices Γ(p, t) with small
phase shift (|t| < 1

2
− 1

p
) arise as hybrids of Fuchsian triangle groups.

2. The non-arithmetic lattices Γ(4, 1/12) and Γ(5, 1/5) in PU(2, 1) arise
as hybrids of two non-commensurable arithmetic lattices in PU(1, 1).

The second part of this theorem highlights the similarity of our hybrids and
those hybrids of Gromov–Piatetski-Shapiro, specifically in its ability to pro-
duce a nonarithmetic lattice as a hybrid of two noncommensurable arithmetic
lattices.
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2 Background

2.1 Complex hyperbolic space

Let H be a Hermitian matrix of signature (n, 1) and let Cn,1 denote Cn+1

endowed with the Hermitian form 〈·, ·〉H coming from H. Let V− denote
the set of points z ∈ Cn,1 for which 〈z, z〉H < 0, and let V0 denote the
set of points for which 〈z, z〉H = 0. Given the usual projectivization map
P : Cn,1 − {0} → CPn, complex hyperbolic n-space is Hn

C = P(V−) with
distance d coming from the Bergman metric

cosh2 1

2
d(π(x), π(y)) =

|〈x, y〉|2

〈x, x〉〈y, y〉

The ideal boundary ∂∞Hn
C is then identified with P(V0).

2.2 Complex hyperbolic isometries

Let U(n, 1) denote the group of unitary matrices preserving H. The holomor-
phic isometry group of Hn

C is PU(n, 1) = U(n, 1)/U(1), and the full isometry
group is generated by PU(n, 1) and the antiholomorphic involution z 7→ z.
Any holomorphic isometry of Hn

C is one of the following three types:

• elliptic if it has a fixed point in Hn
C.

• parabolic if it has exactly one fixed point in the boundary (and no fixed
points in Hn

C).
• loxodromic if it has exactly two fixed points in the boundary (and no

fixed points in Hn
C).

Given a vector v ∈ Cn,1 with 〈v, v〉 = 1 and complex number ζ with unit
modulus, the map

Rv,ζ(x) : x 7→ (ζ − 1)〈x, v〉v

is an an isometry of Hn
C called a complex reflection, and its fixed point set

v⊥ ⊂ Hn
C is a totally geodesic subset called a Cn−1-plane (or a complex line

when n = 2).
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2.3 Mostow’s lattices

Following along with [Mos80] and [DFP05], p ≥ 3 is an integer, t is a real

number satisfying |t| < 3
(

1
2
− 1

p

)
, α = 1

2
csc(π/p), ϕ = eπit/3, and η = eπi/p.

The Hermitian form is given by 〈x, y〉 = xTHy where

H =

 1 −αϕ −αϕ
−αϕ 1 −αϕ
−αϕ −αϕ 1

 .

With p, t as above, the reflection groups to consider are Γ(p, t) = 〈R1, R2, R3〉
where

R1 =

η2 −iηϕ −iηϕ
0 1 0
0 0 1

 , R2 =

 1 0 0
−iηϕ η2 −iηϕ

0 0 1

 , R3 =

 1 0 0
0 1 0
−iηϕ −iηϕ η2

 .

When |t| < 1
2
− 1

p
, Mostow refers to these groups has having ”small phase

shift.”

Following the notation in [DFP05], we study closely related groups Γ̃(p, t) =
〈R1, J〉 where

J =

0 0 1
1 0 0
0 1 0

 .

J has order 3 and Ri = JRi+3J
−1 (where indices are taken modulo 3).

Proposition 2 (Lemma 16.1 in [Mos80], Prop 2.11 in [DFP05]). If Γ(p, t)
is discrete, then it has index 1 or 3 in Γ̃(p, t).

Remark (Tables 1 and 2 in [Mos80], Remark 5.3 in [DFP05]). Given p =
3, 4, 5, there are only finitely-many values of t for which Γ(p, t) is discrete.
They are given in Table 1.

Theorem 3 (17.3 in [Mos80]). The following lattices Γ(p, t) ≤ PU(2, 1)
are nonarithmetic: Γ(3, 5/42), Γ(3, 1/12), Γ(3, 1/30), Γ(4, 3/20), Γ(4, 1/12),
Γ(5, 1/5), Γ(5, 11/30). The non-cocompact lattices Γ(p, t) are arithmetic.
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p |t| < 1
2
− 1

p
|t| ≥ 1

2
− 1

p

3 0, 1
30

, 1
18

, 1
12

, 5
42

1
6
, 7

30
, 1

3

4 0, 1
12

, 3
20

1
4
, 5

12

5 1
10

, 1
5

11
30

, 7
10

Table 1: Values of p and t for which Γ(p, t) is discrete.

3 Hybrids

We present a more general and flexible hybrid construction than that orig-
inally proposed by Hunt, with the hope that it allows us to produce more
lattices.

Definition. Let Γ1,Γ2 < PU(n, 1) be lattices. We define a hybrid of Γ1,Γ2 to
be any groupH(Γ1,Γ2) generated by discrete subgroups Λ1,Λ2 < PU(n+1, 1)
stabilizing totally geodesic hypersurfaces Σ1,Σ2 (respectively) such that

1. Σ1 and Σ2 are orthogonal,

2. Γi = Λi|Σi
, and

3. Γ1 ∩ Γ2 is a lattice in PU(n− 1, 1).

We note that the hybrids explored in [Pau12] and [PW18] are still hybrids
in this new sense as well, taking Λj = ιj(Γj) where ιj was an embedding into
Σj.

3.1 Small phase shift hybrids

When Γ(p, t) has small phase shift, the fundamental domain for each of these
groups is built by coning over a right-angled hexagon (see Figure 1 on Page
16 of [DFP05]) which becomes degenerate for larger t-values. Taking lifts to
C2,1, one sees that non-adjacent sides for each hexagon intersect in positive
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vectors , which are given explicitly below:

v123 =

−iηϕ1
iηϕ

 , v231 =

 iηϕ
−iηϕ

1

 , v312 =

 1
iηϕ
−iηϕ

 ,

v321 =

 iηϕ
1
−iηϕ

 , v132 =

−iηϕiηϕ
1

 , v213 =

 1
−iηϕ
iηϕ

 .

Geometrically, vijk is the polar vector to the mirror for the complex reflection
J±1RjRk (for k = j ± 1). What’s more,

Proposition 4 (Proposition 2.13(3) in [DFP05]). vijk ⊥ vjik and vijk ⊥ vikj.

For the hybrid construction, we use the subspaces (considered as projective
subspaces of H2

C) corresponding to v⊥ijk. Since Jvijk = vkij, it suffices to look

only at v⊥312 and v⊥312 as the remaining subspaces are obtained by successive
applications of J . In homogeneous coordinates, one sees that

v⊥312 = {[z, iηϕ, 1]T : z ∈ C}
v⊥321 = {[iηϕ, z, 1]T : z ∈ C}

Let Λijk ≤ Γ(p, t) be the stabilizer subgroup of v⊥ijk, which is naturally iden-
tified with a subgroup of PU(1, 1), and let Γijk be a lift of this group to
SU(1, 1).

Proposition 5. Γ312 is a cocompact lattice in SU(1, 1). It is arithmetic for
all pairs (p, t) appearing in Table 1 except (3, 1/30), (3, 1/12), (3, 5/42), and
(4, 3/20).

Proof. R1 and R3J both stabilize v⊥312:

R1 : [z, iηϕ, 1]T 7→ [η2z + ϕ2 − iηϕ, iηϕ, 1]T

R3J : [z, iηϕ, 1]T 7→ [iηϕ/z, iηϕ, 1]T
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Let A and B be the following elements in SU(1, 1) corresponding to the
actions of R1 and R3J on v⊥312, respectively.

A =
1

η

(
η2 ϕ2 − iηϕ
0 1

)
B =

1√
−iηϕ

(
0 iηϕ
1 0

)
One can check that

|Tr(A)| = |eiπ/p + e−iπ/p|
|Tr(B)| = 0

|Tr(A−1B)| = |eiπ(−1/2+1/p+t/3) + e−2πit/3|
All of these values are less than 2 when p ≥ 3 and |t| 6= 1

2
− 1

p
and so

the elements are elliptic. Thus 〈A,B〉 is a cocompact triangle group (and
therefore Γ312 is a cocompact lattice). By computing orders of these elements
for (p, t) values in Table 1, one obtains table below showing the corresponding
triangle groups, and arithmeticity of each can be checked by comparing with
the main theorem of [Tak77].

(p, t) 4(x, y, z) (p, t) 4(x, y, z)
(3,−5/42) 4(2, 3, 7) (4,−3/20) 4(2, 4, 5)
(3,−1/12) 4(2, 3, 8) (4,−1/12) 4(2, 4, 6)
(3,−1/18) 4(2, 3, 9) (4, 0) 4(2, 4, 8)
(3,−1/30) 4(2, 3, 10) (4, 1/12) 4(2, 4, 12)

(3, 0) 4(2, 3, 12) (4, 3/20) 4(2, 4, 20)
(3, 1/30) 4(2, 3, 15) (5,−1/5) 4(2, 4, 5)
(3, 1/18) 4(2, 3, 18) (5,−1/10) 4(2, 5, 5)
(3, 1/12) 4(2, 3, 24) (5, 1/10) 4(2, 5, 10)
(3, 5/42) 4(2, 3, 42) (5, 1/5) 4(2, 5, 20)

Proposition 6. Γ321 is a cocompact lattice in SU(1, 1). It is arithmetic for
all pairs (p, t) appearing in Table 1 except (3,−5/42), (3,−1/12), (3,−1/30),
and (4,−3/20).

Proof. R2 and JR−1
3 both stabilize v⊥321:

R2 : [iηϕ, z, 1]T 7→ [iηϕ, η2z + ϕ2 − iηϕ, 1]T

JR−1
3 : [iηϕ, z1]T 7→ [iηϕ, iηϕ/z, 1]T
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Let A and B be the following elements in SU(1, 1) corresponding to the
actions of R2 and JR−1

3 on v⊥321, respectively.

A =
1

η

(
η2 ϕ2 − iηϕ
0 1

)
B =

1√
−iηϕ

(
0 iηϕ
1 0

)
One can check that

|Tr(A)| = |eiπ/p + e−iπ/p|,
|Tr(B)| = 0,

|Tr(A−1B)| = |eiπ(1/2+1/p−t/3) − e2πit/3|,

All of these values are less than 2 when p ≥ 3 and |t| 6= 1
2
− 1

p
and so

the elements are elliptic. Thus 〈A,B〉 is a cocompact triangle group (and
therefore Γ321 is a cocompact lattice). By computing orders of these elements
for (p, t) values in Table 1, one obtains table below showing the corresponding
triangle groups, and arithmeticity of each can be checked by comparing with
the main theorem of [Tak77].

(p, t) 4(x, y, z) (p, t) 4(x, y, z)
(3,−5/42) 4(2, 3, 42) (4,−3/20) 4(2, 4, 20)
(3,−1/12) 4(2, 3, 24) (4,−1/12) 4(2, 4, 12)
(3,−1/18) 4(2, 3, 18) (4, 0) 4(2, 4, 8)
(3,−1/30) 4(2, 3, 15) (4, 1/12) 4(2, 4, 6)

(3, 0) 4(2, 3, 12) (4, 3/20) 4(2, 4, 5)
(3, 1/30) 4(2, 3, 10) (5,−1/5) 4(2, 5, 20)
(3, 1/18) 4(2, 3, 9) (5,−1/10) 4(2, 5, 10)
(3, 1/12) 4(2, 3, 8) (5, 1/10) 4(2, 5, 5)
(3, 5/42) 4(2, 3, 7) (5, 1/5) 4(2, 4, 5)

Theorem 7. For |t| < 1
2
− 1

p
, the hybrid H(Γ312,Γ321) is the full lattice

Γ̃(p, t).

Proof. The group K = 〈R1, R3J,R2, JR
−1
3 〉 is a subgroup of H(Γ312,Γ321).

Since J = (R3J)−1(JR−1
3 )−1, K = 〈R1, J〉 = Γ̃(p, t).
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By comparing with the table on Page 418 of [MR03], one sees that Γ312

and Γ321 are both arithmetic and noncommensurable in the cases where
(p, t) = (4, 1/12) and (5, 1/5). This means that Γ(4, 1/12) and Γ(5, 1/5)
are nonarithmetic lattices obtained by interbreeding two noncommensurable
arithmetic lattices, exactly as in the Gromov–Piatetski-Shapiro construction.
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